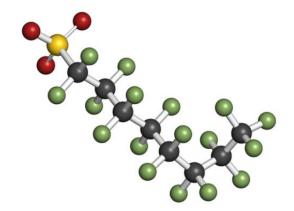
PFAS, a threat for food safety?

Stefan van Leeuwen, Wageningen Food Safety Research



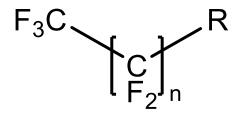
Contents of the talk

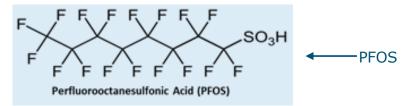
- Background on PFAS
- Regulations
- Analytical methods & challenges
- Case of Chemours
- Guidelines and need for standards
- Take home message

Background PFAS

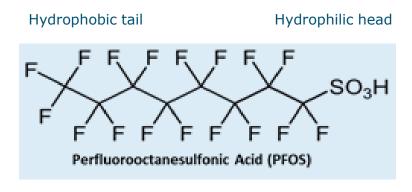
- Persistent compounds, strong C-F bond
- Large diversity of compounds
 - Phys-chem properties
 - Stability
- Applied everywhere in society (households, industry, automotive, medical, etc etc)
- Early reports on PFAS from 2001 onwards

 The PFAS family of >4700 compounds (OECD definition)



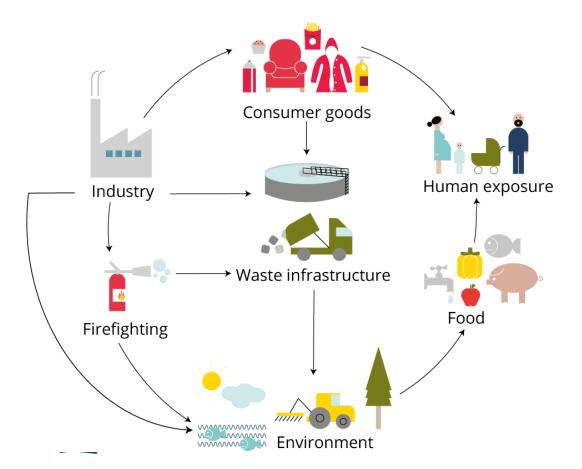

What are PFAS?

PFAS is a **<u>collective name</u>** for, mainly, aliphatic compounds of which (part of) the hydrogen atoms have been replaced by Fluorine:


- Carboxylic acids: R = -COOH
- Sulfonates: $R = -SO_3H$
- Sulfonamides:
- Telomers:
- Phosphates:

 $R = -SO_2NH_2$ $R = -C_2H_4R'$ $R = -PO_4H_2$

Excellent surfactants



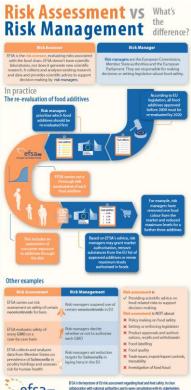
- Application as:
- Emulsifiers in fluoropolymer production (e.g. PTFE)
- Aqueous Fire Fighting Foams
- Water/fat/dirt repellent surface treatment (food contact materials, out-door clothing

Sources of PFAS in foods

 Indirect pollution of food and drinking water from the environment or processing

 Direct contamination (e.g. through food contact materials)

Risk Assessment & Management of PFAS


Risk Assessment, Management & Enforcement

- Risk Assessment of PFAS
 - European Food safety Authority (EFSA)

- Risk Management of PFAS
 - European Commission

- Enforcement of PFAS regulations
 - Member states

munication on existing and emerging risks.

www.efsa.europa.ee

Risk Assessment

EU Risk Assessment

- European Food Safety Authority (EFSA), 2020
- Consumers may be at risk at low levels (TWI = 4.4 ng/kg bw per week)
- PFHxS, PFOS, PFOA, PFNA

EFSA -Responsible for risk assessment

European Food Safety Authority

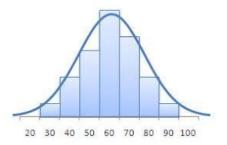
Exposure 4 PFASs (ng/kg bw/week)

	Range of mean dietary exposure (LB-UB) (ng/kg bw per week)			
Age group	Mean LB dietary exposure			
	Minimum	Median	Maximum	
Infants	17	34	85	
Toddlers	10	21	46	
Other children	6	11	21	
Adolescents	3	6	11	
Adults	4	6	9	
Elderly	5	6	15	
Very elderly	3	6	22	
Age group	95th perce	ntile LB dieta	ry exposure	
	Minimum	Median	Maximum	
Infants				
Toddlers				
Children				
Adolescents				
Adults				
Elderly				
Very elderly				

TWI: 4.4 ng/kg bw/week for sum of 4 PFAS

 Higher intake infants included in deriving TWI

 For <u>mean</u> exposures, nearly all age groups exceed TWI



Exposure 4 PFASs (ng/kg bw/week)

		mean dietar (ng/kg bw j		
Age group	Mean LB dietary exposure			
	Minimum	Median	Maximum	
Infants	17	34	85	
Toddlers	10	21	46	
Other children	6	11	21	
Adolescents	3	6	11	
Adults	4	6	9	
Elderly	5	6	15	
Very elderly	3	6	22	
Age group	95th percentile LB dietary exposure			
	Minimum	Median	Maximum	
Infants	32	96	195	
Toddlers	23	53	96	
Children	19	29	68	
Adolescents	9	15	37	
Adults	9	16	35	
Elderly	12	17	39	
Very elderly	9	16	70	

TWI: 4.4 ng/kg bw/week

At <u>95% percentile</u>, all age groups exceed TWI

Risk Management

European Food Safety Authority

European Commission EC - Responsible for risk management

Risk management of PFAS

Setting maximum limits for PFAS in selected foods where PFAS contamination needs to be regulated Recommendation for monitoring for foods with limited knowledge on PFAS contamination

Capacity building: improving the capabilities of laboratories to measure PFAS in food

Risk Management of PFAS

- Commission Recommendation (EU) 2022/1431 of 24 August 2022 on the monitoring of perfluoroalkyl substances in food
- Commission Implementing Regulation (EU) 2022/1428 of 24 August 2022 laying down <u>methods of sampling and analysis for the control</u> <u>of perfluoroalkyl substances in certain foodstuffs</u>
- Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs

2022/1431: monitoring of perfluoroalkyl substances in food - compounds

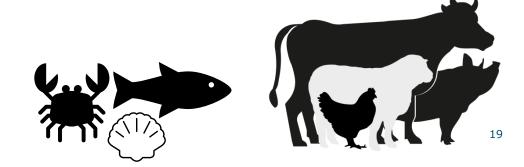
- Commission Recommendation
- MS should test for PFOS, PFOA, PFHxS, PFNA
- MS should also consider to test for emerging PFAS like F53B, GenX, ADONA, Capstone A + B and Flourotelomer alcohols
- MS should, if possible, also test for PFBA, PFPeA, PFHxA, PFHpA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFTeDA, PFBS, PFPS, PFHpS, PFNS, PFDS, PFUnDS, PFDoDS, PFTrDS, FOSA

2022/1431: monitoring of perfluoroalkyl substances in food - commodities

- The monitoring should include a wide variety of foodstuffs reflecting consumption habits, including fruits, vegetables, starchy roots and tubers, seaweed, cereals, nuts, oilseeds, food for infants and young children, food of animal origin, non-alcoholic drinks, wine and beer. Some specific criteria:
 - for products from different production types, incl organic
 - for animal products (indoor and outdoor rearing, wild and farmed species)
 - for potatoes (peeled, unpeeled, different varieties) and for for fungi, for wild and farmed fungi.

2022/1431: monitoring of perfluoroalkyl substances in food - LOQs

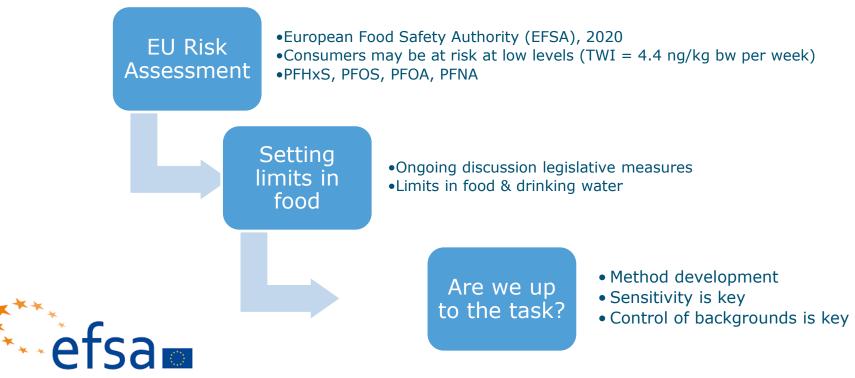
- LOQs should be low (0.001 to 0.5 ug/kg), depending on compounds and food type
- Indicative levels: searching for the source of contamination, when the indicative levels are exceeded
 - (0.005-1,5 ug/kg), depending on compounds and food type


2022/1428: methods of sampling and analysis for the control of perfluoroalkyl substances in food

- Methods for sampling defined
- Methods of chemical analysis defined
 - Precautions to reduce impact of background contamination
 - Performance criteria (precision, trueness, LOQ)
 - Reporting of results
- Reference to EU Reference Laboratory Guidance Document on Analytical Parameters for determination to PFAS

Commission Regulation (EC) No 1881/2006 of 19 December 2006 <u>setting maximum levels</u> for certain contaminants in foodstuffs

- Maximum Levels for PFAS in food will become into force 01/01/2023
- For 4 PFAS and the sum of 4
- Foods include animal products
- Not for feed



European activities - food

European Food Safety Authority

20

The analysis of PFAS in food & feed

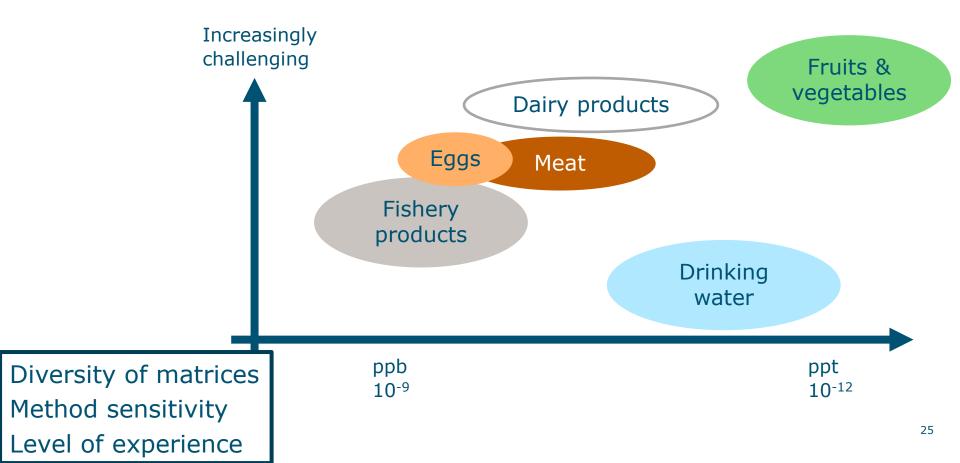
Essential backgrounds

- Little information about PFAS in feed
- PFAS can be found in all foods (vegetable, animal, drinks)
- 20+ compounds, of which 4 will become part of legislation for food
- Liquid chromatography coupled to mass spectrometry

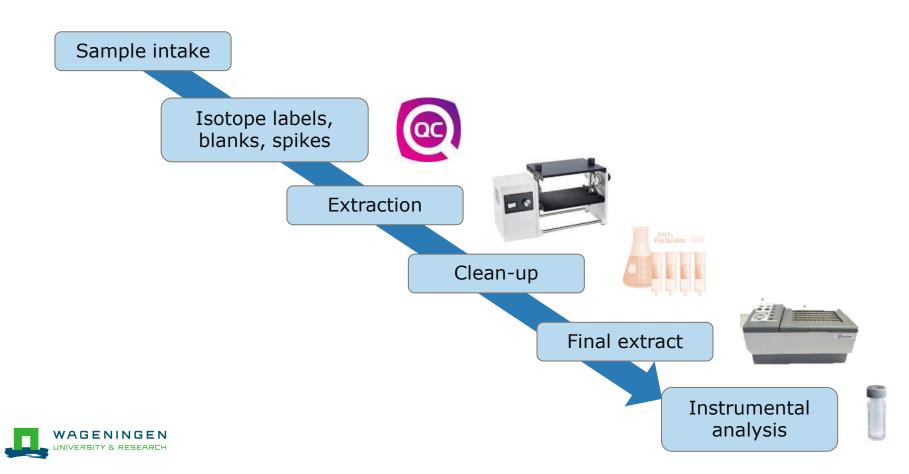
Analytical challenges

- Diverse nature of the PFAS
 - Short chain (water soluble) to long chain (bioaccumulative)
- Wide variety of matrices (drinking water, dairy, meats, fish, offal, fruits & vegetables)
- Sensitivity improvement, down to low ppt (10-12) level
- Blanks: PFAS are everywhere in society, also in the lab
- Interferences: interfering compounds that may compromise PFOS accuracy

Selection of PFAS compounds


- Table: commonly analysed PFAS
 - Sulfonic acids
 - Carboxylic acids
- List includes 4 analytes marked by EFSA in their risk assessment

PFPeA $C_5HF_9O_2$ PFHxS C_6 PFHxA $C_6F_{11}O_2^-$ PFHpS C_7	₄ F ₉ SO ₃ - ;F ₁₃ SO ₃ - ,F ₁₅ SO ₃ -
PFHxA $C_6F_{11}O_2^-$ PFHpS C_7	20 0
	F ₁₅ SO ₃ ⁻
	${}_{3}F_{17}SO_{3}^{-}$
PFOA $C_8F_{15}O_2^-$ PFDS $C_{10}F_{10}$	HF ₂₁ SO ₃ -
PFNA $C_9F_{17}O_2^-$ PFUnDS $C_{11}H$	HF ₂₃ SO ₃ -
PFDA $C_{10}F_{19}O_2^{-1}$ PFDoDS $C_{12}F_{12}F_{12}O_{12}F_{13}O_{12}F$	HF ₂₅ SO ₃ -
PFUnDA $C_{11}F_{21}O_2^-$ PFTrDS $C_{13}H$	HF ₂₇ SO ₃ -
PFDoDA C ₁₂ F ₂₃ SO ₃ - Acronym Mo	olecular
	ormula
PFTeDA C ₁₄ F ₂₇ SO ₃ - GenX C ₁₂	HF ₂₇ SO ₃ -



In addition, PFAS replacement chemicals, e.g. DONA, F53B

Matrix type vs analytical challenge

Methodology – Extraction & Clean-up

Methodology – Instrumental analysis

UPLC or HPLC

- Most ionic PFAS are not GC emendable
- MS/MS, QTOF, HRMS

- Two transitions or similar identification potential for specificity (interferences)
- Prevent PTFE of other fluoropolymers

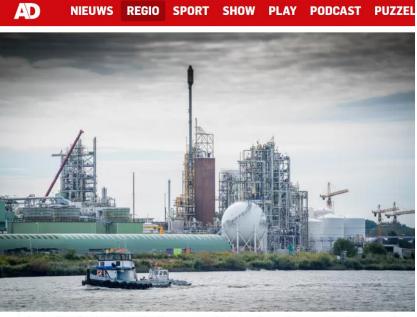
Sciex 7500 UPLC-MS/MS

QA\QC: Blank issues

PFAS are used everywhere – so beware of blanks

- Dust in the lab
- Solvents, reagents
- Instrument (LC-MS/MS)

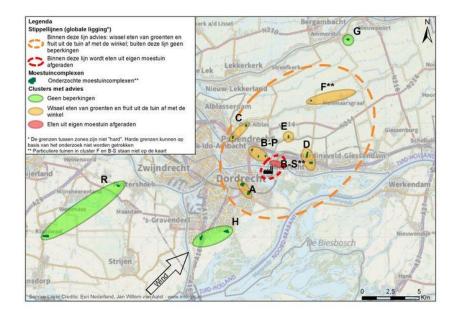
- Which blanks to run?
 - Method blanks
 - Instrument (solvent) blanks



Studie volkstuintjes nabij Chemours

- Chemours is chemische fabriek die PFAS maakt
- Historische uitstoot via lucht en water naar de omgeving
- Volkstuintjes in de regio
 Sliedrecht vervuild met
 PFAS
- Kunnen eigen groenten gegeten worden?

De provincie Zuid-Holland eist dat Chemours de uitstoot van pfas sneller terug dringt © Cees van der Wal


Provincie: Chemours moet uitstoot pfas sneller terugdringen

Studieresultaat

- WFSR: analyse groenten- en fruitmonsters
- RIVM: risicobeoordeling

 Advies: vermijd/beperk consumptie uit eigen tuin in nabijheid van de fabriek

How to get started

- Equip your laboratory with resources (machines, human capital, standards, materials)
- Establish the methods, and take care of blanks, sensitivity, interferences etc
- Accreditation
- Monitor the QA\QC, and participate in proficiency tests (e.g. FAPAS, QUASIMEME, EURL)

How about equipment, labware, reference standards...

- Instrumental analysis can be run on commercial systems
 - Some plumbing may be needed to remove PTFE
- Consumable suppliers in recent years paid more attention to 'PFASfree' SPE, sorbents, tubes, chemicals etc etc
- Reference standards are commercially available for the most common PFAS, as well as many (13C) labelled analogues

Standards available?

ISO standards available for (drinking) water

- ISO 21675:2019 & ISO 25101:2009
- No CEN/ISO standards available for food (or feed)
 - Need to support future legislation on maximum levels in food
- European Reference Laboratories (EURL) network has worked on guidelines (next slide)

Standardisation of PFAS analysis in food/feed?

No standard available yet

- To support future implementation of limits, dietary exposure assessment, (inter)national trade and ultimately (human) health.
- Agree on priorities (#PFAS, #matrices, #method characteristics, timelines)

At the European scale – capacity building

- European working group (hosted by EURL-POPs) setting guidelines for analysis of PFAS
- Improving an EU-wide testing infrastructure
- Food and feed
- Performance criteria, not a standard
- Analysis, excluding sampling
- Animal origin/plant origin
- Published recently

At the European scale – Guidance document

⁸⁸ Br 17	European Union Reference Laboratory for halogenated POPs in Feed and Food
	Guidance Document on Analytical Parameters for the Determination of Per- and Polyfluoroalkyl Substances (PFAS) in Food and Feed
	Version 1.2
	11 May 2022
	EURL POPs
\circ	EURs, for halogeneties POVIs in Field and Flood Stable histitute for Chemical and Veternivary Analyza Finburg Commany

- Version 1.2, 11 May 2022
- Performance based criteria on analysis
- Check updates on
- <u>https://eurl-pops.eu/</u>

European inventory of analytical methods

2021 NORMAN network PFAS Analytical Exchange

February 2022

Provided by Environment Agency (UK)

In collaboration with Aarhus University (DK), Finnish Environment Institute SYKE (FI), IWW Water Centre (DE), Norwegian Environment Agency (NO), Orebro University (SE), University of the Basque Country (ES), VITO NV (BE), Wageningen Food Safety Research (NI)

Kerry Sims, Alun James, Anna Kärrman, Audun Heggelund, Belén González-Gaya, Duncan Gray, Griet Jacobs, Leendert Vergevist, Noora Perkola, Robert Carter, Stefan van Leeuwen, Ulrich Borchers

For further information relating to this report please contact Kerry Sims: Kerry.Sims@environment-agency.gov.uk

- NORMAN Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substances
- Published Feb 2022
- Summary of analytical approaches on PFAS in environmental matrices (incl. water and biota)
- <u>https://www.norman-network.net/?q=Home</u>

Take home message

- PFAS face global scientists, laboratories and regulators with big challenges
- PFAS are a threat to human health and safe foods
- There is a good basis on PFAS analytical tools for targeted PFAS analysis, but further progress is needed
- Standardisation of PFAS analysis in foods is not in place, but is needed

Acknowledgements

- EURL Core working group on PFAS analysis for stimulating discussions while preparing the guidelines
- Various funding sources
- @WFSR: Technicians, co-workers and students
 - Ron Hoogenboom, Bjorn Berendsen, Ruben Kause, Rens Leontien de Pagter, Bob van Dooren, Rens Keppels, Niels Pouwels, Menno Duits, and many more....

Contact details

Thank you for your attention

Contact details:

Stefan.vanLeeuwen@wur.nl

Wageningen Food Safety Research (WFSR)

